Abstract

Electrical properties and deep electron and hole trap spectra were measured for undoped n-GaN cut from a thick boule grown by hydride vapor phase epitaxy (HVPE). The material is characterized by a very low concentration of residual donors (1013–1014 cm−3) in the first 30 μm near the growth surface. The bulk electrical properties were similar to those of standard high quality undoped bulk HVPE n-GaN, with a net donor concentration of ∼1016 cm−3 and mobility ∼1000 cm2/V s. The strong decrease of electron concentration in the surface region of the high resistivity GaN was caused by the compensation of shallow residual donors by a high density (∼6 × 1015 cm−3) of hole traps with activation energy of 0.2 eV, confined to the compensated region. In addition, other hole traps H5 with activation energy 1.2 eV and concentration 5 × 1015 cm−3 were present. These latter traps had similar concentrations in both the high resistivity and standard conducting HVPE GaN. Radiation detectors prepared on the high resistivity material showed charge collection efficiency (CCE) close to 100% for spectrometry of α-particles with energy up to 5.1 MeV. The CCE dependence on voltage indicated a strong trapping of holes in the active region of detectors by the H5 hole traps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.