Abstract

The study in this paper investigates how contaminations and different types of pollutants affect the electrical performance of outdoor coated porcelain, coated glass, and composite insulators when subjected to an 11 kV AC voltage. The ceramic insulators (porcelain and glass) coating layer is assumed to be RTV silicon rubber material with a 0.5 mm thickness. The effect of these three pollution cases on the electrical performance were investigated using a commercial software called COMSOL Multiphysics based on the finite element method (FEM). The three pollution cases were uniform, non-uniform pollution, and water droplets. In the uniform pollution condition, the pollution layer over the surface of the insulators was assumed to be 0.5 mm; however, in non-uniform pollution condition, water patches with a thickness varying from 0.5 to 1.5 mm was used. In water droplets condition, hemispherical shapes were used to model water droplets with a diameter of 1 mm. Voltage, electrical field distributions, and dissipated power were computed along the creepage distance of the three insulators models. The simulation results indicated that for the uniform case, the lowest electrical field appeared on the silicon rubber insulator. For the non-uniform case, the electrical field distribution became more non-uniform for the three models. In the water droplets case, more fluctuations appeared in the metal end fittings where the water droplets were located. The analysis indicated that the maximum dissipated power was found to be for the coated glass. The obtained results showed that the silicon rubber insulator offered better performance compared with coated porcelain and glass. Coated porcelain offered better performance compared with the coated glass insulator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call