Abstract

Compliant free-standing structures can be used as chip-to-substrate interconnects. Such ldquocompliant interconnectsrdquo are a potential solution to the requirements that will be imposed on chip-to-substrate interconnects over the next decade. However, cost of implementation and electrical performance limit compliant interconnects. In our previous work, we have proposed a new compliant interconnect technology called FlexConnect to address these concerns with compliant interconnects. An innovative cost-effective MEMS-based fabrication process is used to fabricate these compliant interconnects. Sequential lithography and electroplating processes with up to two masking steps are utilized. Utilizing the proposed fabrication process, in this paper, FlexConnects are realized at a 100-mum pitch. High-frequency modeling of the electrical parasitics of the interconnect is performed. Through finite-element-based models, the advantage of using multiple electrical paths as part of the interconnect design is shown from a thermomechanical reliability perspective. Finally, taking advantage of the MEMS-based photolithographic fabrication process, a heterogeneous combination of FlexConnects and column interconnects is proposed. This approach is shown to be an additional avenue to attain improved electrical performance without compromising mechanical performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.