Abstract

Transepidermal water loss (TEWL) in psoriatic skin lesions seems to be related to the severity of the psoriasis, and the electrical capacitance and conductance of the skin are indicators of the hydration level of the stratum corneum. We compared the characteristics of these electrical measurements, in assessing the persistent effect of a moisturizing cream on skin hydration and barrier function in psoriasis patients. Seventeen Korean psoriasis patients were recruited. Their right leg was treated with the moisturizer twice daily for 6 weeks, while their left leg was used as the control site. For each patient, one psoriatic plaque on each leg was selected as the involved psoriatic lesion. Uninvolved psoriatic skin was regarded as the apparently healthy looking skin 4-5 cm away from the periphery of the psoriatic lesion. The TEWL, electrical capacitance and conductance were measured, in order to evaluate the barrier function and hydration level of the stratum corneum. The clinical and biophysical data for each patient were recorded at the start of the study and after 2, 4 and 6 weeks. The degree of skin dryness at the applied area improved progressively. The electrical capacitance at the treated psoriatic lesion increased significantly after 2 weeks, and this improvement was maintained during the entire study period. However, no noticeable change was observed in the electrical conductance. The TEWL showed an inverse pattern to that of the skin capacitance, decreasing during the study period. The skin capacitance and TEWL exhibited good correlation with the visual assessment of skin dryness, but the skin conductance did not. Our data suggest that electrical capacitance and TEWL may be useful in the evaluation of the effect of a moisturizer on the hydration status and barrier function of psoriatic skin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.