Abstract

We show that a topological phase supporting Majorana fermions can form in a two-dimensional electron gas (2DEG) adjacent to an interdigitated superconductor-ferromagnet structure. An advantage of this setup is that the 2DEG can induce the required Zeeman splitting and superconductivity from a single interface, allowing one to utilize a wide class of 2DEGs including the surface states of bulk InAs. We demonstrate that the interdigitated device supports a robust topological phase when the finger spacing λ is smaller than half of the Fermi wavelength λ(F). In this regime, the electrons effectively see a "smeared" Zeeman splitting and pairing field despite the interdigitation. The topological phase survives even in the opposite limit λ > λ(F)/2, although with a reduced bulk gap. We describe how to electrically generate a vortex in this setup to trap a Majorana mode, and predict an anomalous Fraunhofer pattern that provides a sharp signature of chiral Majorana edge states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.