Abstract
The electrical impedance response of gelatin based solid polymer electrolyte to gamma irradiation is investigated by impedance spectroscopy. An analysis based on Poisson–Nernst–Plank model, incorporating fractional time derivatives is carried out. A detailed derivation for anomalous impedance function is given. The model involves boundary conditions with convolution of the fractional time derivative of ion density and adsorption desorption relaxation kinetics. A fractional diffusion–drift equation is used to solve the bulk behavior of the mobile charges in the electrolyte. The complex adsorption–desorption process at the electrode–electrolyte interface produces an anomalous effect in the system. The model gives a good fit for the observed impedance data for this biopolymer based solid electrolyte in a wide range of frequencies. We have compared different parameters based upon this model for both irradiated and unirradiated samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.