Abstract

Epitaxial graphene is a promising route to wafer-scale production of electronic graphene devices. Chemical vapor deposition of graphene on silicon carbide offers epitaxial growth with layer control but is subject to significant spatial and wafer-to-wafer variability. We use terahertz time-domain spectroscopy and micro four-point probes to analyze the spatial variations of quasi-freestanding bilayer graphene grown on 4 in. silicon carbide (SiC) wafers and find significant variations in electrical properties across large regions, which are even reproduced across graphene on different SiC wafers cut from the same ingot. The dc sheet conductivity of epitaxial graphene was found to vary more than 1 order of magnitude across a 4 in. SiC wafer. To determine the origin of the variations, we compare different optical and scanning probe microscopies with the electrical measurements from nano- to millimeter scale and identify three distinct qualities of graphene, which can be attributed to the microstructure of the SiC surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.