Abstract

In order to achieve improved understanding and gain insights into the device operation of interband cascade infrared photodetectors (ICIPs) and ultimately to optimize the design, we present a comparative study of five long-wavelength (LW) ICIPs based on a type-II InAs/GaSb superlattice. This study shows how the device responsivity is affected by the individual absorber thicknesses and the number of cascade stages, through the impact of light attenuation. Additionally, this study further validates that the electrical gain universally exists in non-current-matched ICIPs. With multiple cascade stages to suppress noise, these LW ICIPs achieved superior device performance at high temperatures, in terms of Johnson-noise limited detectivities, compared to commercial MCT detectors. Furthermore, a theory is developed to quantitatively describe the electrical gain in ICIPs and our calculations are in good agreement with the experimental results. Based on the theory, the optimal number of stages for maximizing the device detectivity D* is identified with inclusion of the electrical gain. Our calculation shows that this optimal number of stages is relatively large in the presence of the gain and the maximized D* has a relatively weak dependence on the absorber thickness when it is sufficiently thin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call