Abstract

Shape memory alloys, specifically nickel-titanium (NiTi), exhibit excellent technical properties that suited them for biomedical applications. However, the release of nickel ions into human body is a drawback because it results in severe adverse health effects as well as degrades the biocompatibility of the alloys. In this work, surface modification through adaptation of electrical discharge machining was used to develop a deposition layer of titanium oxide on NiTi alloy surface. The adaptation was through electrical discharge coatings (EDC) parameters such as polarity, gap voltage, and erosion depth that were set up to study their effects on the experimental performance. The experiment was parameterized by implementing 2 level of full factorial design with ANOVA analysis to measure the surface roughness of that machined surface. One-factor-at-a-time, OFAT method is applied for XRD analysis by adopting the previous parameters approach. The EDC process was aided with deionized water and pure titanium rod as the dielectric fluids and electrodes, respectively. It was determined that the high level of gap voltage provided some major constituents on the surface of NiTi alloy based on XRD analysis. As apparent, this substantiated the presence of the tool materials and their oxide layer phases. The interaction of polarity and gap voltage also indicated a significant effect towards the surface roughness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call