Abstract
Detection of circulating tumor cells (CTCs) from patient blood samples offers a desirable alternative to invasive tissue biopsies for screening of malignant carcinomas. A rigorous CTC detection method must identify CTCs from millions of other formed elements in blood and distinguish them from healthy tissue cells also present in the blood. CTCs are known to overexpress certain surface receptors, many of which aid them in invading other tissue, and these provide an avenue for their detection. We have developed carbon nanotube (CNT) thin film devices to specifically detect these receptors in intact cells. The CNT sidewalls are functionalized with antibodies specific to Epithelial Cell Adhesion Molecule (EpCAM), a marker overexpressed by breast and other carcinomas. Specific binding of EpCAM to anti-EpCAM causes a change in the local charge environment of the CNT surface which produces a characteristic electrical signal. Two cell lines are tested in the device: MCF7, a mammary adenocarcinoma line which overexpresses EpCAM, and MCF10A, a non-tumorigenic mammary epithelial line which does not. Introduction of MCF7s causes significant changes in the electrical conductance of the devices due to specific binding and associated charge environment change near the CNT sidewalls. Introduction of MCF10A displays a different profile due to purely nonspecific interactions. The profile of specific vs. nonspecific interaction signatures using carbon based devices will guide development of this diagnostic tool towards clinical sample volumes.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have