Abstract
SiOCN ceramics have been prepared by the polymer pyrolysis method. The preceramic polymers were synthesized from a polysiloxane cross‐linked with two different N‐containing compounds: a silazane or a ternary amine. The corresponding SiOCN ceramics were obtained by pyrolysis in nitrogen atmosphere at five different temperatures from 1000°C to 1400°C. The electrical conductivity of the powdered SiOCN ceramic samples was determined by the powder‐solution‐composite technique. The results show an increase in room temperature AC conductivity of three orders of magnitude, from ≈10−5 (S/cm) to ≈10−2 (S/cm), with increasing pyrolysis temperature from 1000°C to 1400°C. Furthermore, the electrical conductivity of the amine‐derived SiOCN is three to five times higher than that of the silazane‐derived ceramic at each pyrolysis temperature. The combined structural study by Raman spectroscopy and chemical analysis suggests that the increase of electrical conductivity with the pyrolysis temperature is due to the sp3‐to‐sp2 transition of the amorphous carbon phase. The higher conductivity of the amine‐derived SiOCN is also discussed considering features like the volume% of the free‐carbon phase and its possible N‐doping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.