Abstract
The electrical conductivity of pH-responsive hydrogels based on cross-linked poly(2-hydroxyethyl methacrylate-co-dimethylaminoethyl methacrylate) copolymers has been studied as a function of pH over the range 5-10, for copolymers containing up to 20 mol% of the amine-containing comonomer. The conductivities of membranes equilibrated in buffered potassium chloride solutions were determined by measuring the electrical resistance of a membrane mounted between the chambers of a modified side-by-side diffusion cell. The conductivity, expressed as a fraction of the conductivity of the buffer in which the gels were equilibrated, ranged from 1% for the gels in the collapsed state to 70% for the most highly swollen gels. The observed results are qualitatively consistent with a proposed model in which the ion concentrations in the fluid phase of the gel are described by Donnan partitioning, and the ion mobilities by the free-volume theory of Yasuda. The results suggest that conductivity measurements may provide an alternative to diffusive transport studies for characterizing moderately swollen hydrogel membranes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have