Abstract

The mechanical and electrical properties of nanocomposites created by gold and titanium implantation into polydimethysiloxane (PDMS) are reported for doses from 10 15 to 5 × 10 16 at. cm −2, and for ion energies of 2.5, 5 and 10 keV. Transmission electron microscopy (TEM) cross-section micrographs allowed detailed microstructural analysis of the implanted layers. Gold ions penetrate up to 30 nm and form crystalline nanoparticles whose size increases with ion dose and energy. Titanium forms a nearly homogeneous amorphous composite with the PDMS up to 18 nm thick. Using TEM micrographs, the metal volume fraction of the composite was accurately determined, allowing both electrical conductivity and Young’s modulus to be plotted vs. the volume fraction, enabling quantitative use of percolation theory for nanocomposites <30 nm thick. This allows the composite’s Young’s modulus and conductivity to be linked directly to the implantation parameters and volume fraction. Electrical and mechanical properties were measured on the same nanocomposite samples, and different percolation thresholds and exponents were found, showing that, while percolation explains both conduction and stiffness of the composite very well, the interaction between metal nanoparticles occurs differently in determining mechanical and electrical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.