Abstract

Mixture of a purified illitic clay (>90 wt% of illite, Northeastern Hungary) and CaCO3, in laboratory grade, was studied with respect to the high-temperature crystallization of anorthite and leucite mineral phases. The prepared samples were subjected to thermal analyses – differential scanning calorimetry (DSC) and thermodilatometry (DIL), and microstructure was characterized by scanning electron microscopy. The phase composition of the samples after firing was determined by the help of XRD measurement. Among anorthite and leucite (which were present as dominant mineral phases), gehlenite was found in the fired samples. Crystallization temperatures were determined from DSC peaks (940 °C and 1070 °C for gehlenite/anorthite and leucite crystallization, respectively). The samples exhibited a steep contraction as the low-viscosity glassy phase appeared and the anorthite/gehlenite started to crystallize. The crystallization temperatures were confirmed by the temperature dependence of the loss tangent, which exhibited two maxima at 940 °C and 1070 °C. Thus, during crystallization, the contribution of the ions to the conductivity was hindered by their cooperative migration to occupy new sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.