Abstract

The next-nearest neighbor interaction (NNN) is included in a tight-binding Kubo formula calculation of the electronic spectrum and conductivity of doped graphene. As a result, we observe a wide variation of the behavior of the conductivity, as happens in carbon nanotubes, since the Fermi energy and the resonance peak are not shifted by the same amount when the NNN interaction is included. This finding may have a profound effect on the idea of explaining the minimal conductivity of graphene as a consequence of impurities or defects. Finally, we also estimate the mean free path and relaxation time due to resonant impurity scattering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call