Abstract
Battery electrode microstructures must be porous, to provide a large active surface area to facilitate fast charge transfer kinetics. In this work, we describe how a novel porous electrode scaffold, made from stainless steel 316L powder can be fabricated using selective laser sintering by proper selection of process parameters. Porosity, electrical conductivity and optical microscopy measurements were used to investigate the properties of fabricated samples. Our results show that a laser energy density between 1.50–2.00J/mm2 leads to a partial laser sintering mechanism where the powder particles are partially fused together, resulting in the fabrication of electrode scaffolds with 10% or higher porosity. The sample fabricated using 2.00J/mm2 energy density (60W–1200mm/s) exhibited a good electrical conductivity of 1.80×106S/m with 15.61% of porosity. Moreover, we have observed the porosity changes across height for the sample fabricated at 60W and 600mm/s, 5.70% from base and increasing to 7.12% and 9.89% for each 2.5mm height towards the top surface offering graded properties ideal for electrochemical devices, due to the changing thermal boundary conditions. These highly porous electrode scaffolds can be used as an electrode in electrochemical devices, potentially improving energy density and life cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.