Abstract

Abstract Conducting polymer-based sensors have short response time at room temperature besides their good electrical conductivity. However, the poor electrical conductivity retention at a higher temperature and the failing reproducibility of sensors which are based on conducting polymers are an area of concern. To this end, we are reporting the preparation of polythiophene (PTh) and polythiophene/Tin oxide (PTh/SnO2) nanocomposites by an in-situ chemical oxidative polymerisation. The as-prepared materials were characterized by FTIR, SEM, UV-vis absorbance spectroscopy, TEM and XRD techniques. PTh/SnO2-3 (i.e. PTh/SnO2 nanocomposite containing 15% SnO2 nanoparticles) showed the highest DC electrical conductivity (9.82 × 10−3 S⋅cm−1) in addition to a maximal stability as a function of DC electrical conductivity retention under accelerated isothermal and cyclic ageing conditions. We utilized PTh/SnO2-3 to fabricate a novel pellet-shaped sensor for the selective detection of some of the higher alcohols, such as butan-1-ol (1° alcohol), butan-2-ol (2° alcohol), and 2-methyl propanol (3° alcohol) at room temperature. PTh/SnO2-3 exhibited the highest response in terms of variation in DC electrical conductivity and maximal reproducibility for butan-1-ol. Finally, the sensing mechanism was explained by the adsorption–desorption process of alcohol vapours on the large surface area of the PTh/SnO2 nanocomposites where electronic interactions between the lone pairs of electrons of alcohol molecules with the polarons of PTh cause the change in the DC electrical conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.