Abstract
The electrical conductivity of graphene, multi-wall carbon nanotubes, carbon black nanopowders and graphite powder is characterized using paper-like films and by means of powder compression. The large difference in surface area of these materials results in different packing density and number of contact spots, influencing the macroscopic conductivity of the compacts during powder compression. The results are compared with the percolation threshold and final conductivity of polypropylene (PP) composites, using latex technology for the incorporation of the carbon fillers in the polymer. Even though the PP composites produced in this work exhibit percolation thresholds as low as 0.3wt.%, the final conductivity for all the composites is below 1.5S/m. Reasons why the high value of ∼103S/m, which is obtained for graphene- and nanotube-based paper films or graphite compacts, is not reached for the composites are investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Composites Part A: Applied Science and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.