Abstract

The effect of carbon black (CB) nanopowder on the electrical properties of polymer composite systems based on the epoxy resin is investigated using the method of impedance spectroscopy. It is established that the electrical and dielectric properties of the studied systems significantly depend on the nanofiller content. It is found that electrical conductivity and dielectric constant exhibit percolation behavior when the filler’s content increases. In this case, the electrical conductivity increases exponentially, indicating the formation of filler electrically conductive mesh inside the polymer matrix. A small jump in electrical conductivity when reaching the percolation threshold indicates the formation of indirect contacts between the particles. The value of the percolation threshold of conductivity is 8%. It is shown that the dielectric constant of epoxy nanosystems is almost unchanged in the frequency range of 102–105 Hz. It is related to the structural features of the filler particles, which ensure the existence of a minimal dielectric gradient between the matrix and the filler. It is found that the dielectric constant of the studied systems also shows percolation behavior. The obtained material based on the epoxy matrix is characterized by a high value of dielectric constant, which at a carbon black nanopowder content of 29% is 4680. This material is characterized by relative frequency invariance and a high value of dielectric constant, so it has great potential for practical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.