Abstract

In this work, the current–voltage characteristics of titanium oxynitride thin films were measured and the charge carrier transport mechanisms established as a function of film composition. The films were deposited by magnetron sputtering, where the oxygen/nitrogen ratio was varied via a pulsing technique to enable the achievement of desired concentrations. Thus, the obtained films showed metallic titanium nitrate (TiN) or semiconductor titanium dioxide (TiO2) character and were used to fabricate metal–insulator–metal structures. An ohmic conduction mechanism was identified in the films with higher nitrogen incorporation or presenting TiN-rich phase. Decrease in the nitrogen content resulted in films with TiO2-rich phase. In this case, Poole–Frenkel and space-charge-limited current conduction mechanisms were observed. The dielectric constants were calculated from the high-frequency capacitance–voltage dependences, with a reduction from 10 to 3 being observed due to the stoichiometric changes and probable incorporation of defects into the film structure. Finally, the film composition and structural characteristics of the films were revealed by Rutherford backscattering and x-ray diffraction techniques, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.