Abstract

The electrical conduction behavior of piezoelectric crystals is critical in the design of piezoelectric sensors for use at elevated temperatures. The electrical resistivity and dielectric properties of rare-earth calcium oxyborate crystals ReCa4O(BO3)3 (ReCOB, Re = Y, Gd and Pr) are investigated in this report. The relationships between the electronic structures and electrical properties are then determined using X-ray photoelectron spectra and first principle calculations. Among the ReCOB type crystals, YCOB is found to possess the highest electrical resistivity and lowest dielectric loss. Nonlinearity of the electrical resistivity as a function of temperature for ReCOB crystals is then confirmed, corresponding to different conduction mechanisms. It is also revealed that the electrical conductivity of ReCOB type crystals is heavily influenced by oxygen vacancy defects at relatively lower temperatures (below ∼600 °C), while both vacancy defects and band gap contribute to conductivity at elevated temperatures (above ∼600 °C).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.