Abstract

Hybrid silicon capacitors have been successfully fabricated by attaching monolayers of redox-active molecules via self-assembly to ultrathin silicon dioxide layers. Capacitance, conductance, and cyclic voltammetric measurements have been used to characterize these capacitors. The presence of distinct capacitance and conductance peaks associated with oxidation and reduction of the monolayers at low gate voltages indicates discrete electron storage states for these capacitors, suggesting their feasibility in memory devices. The inherent molecular scalability and low-power operation coupled with existing silicon technology support the approach of hybrid molecule-silicon devices as a strong candidate for next generation electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.