Abstract

A recently developed model for AC hot-carrier lifetimes is shown to be valid for typical and worst-case stress waveforms found in CMOS circuits. Three hot-carrier damage mechanisms are incorporated into the model: interface states created at low and medium gate voltages, oxide electron traps created at low gate voltages, and oxide electron traps created at high gate voltages. It is shown that the quasi-static contributions of these three mechanisms fully account for hot-carrier degradation under inverterlike AC stress. No transient effects are required to explain AC stress results, at least for frequencies up to 1 MKz.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call