Abstract

Top-gated field-effect transistors have been created from bilayer epitaxial graphene samples that were grown on SiC substrates by a vacuum sublimation approach. A high-quality dielectric layer of Al2O3 was grown by atomic layer deposition to function as the gate oxide, with an e-beam evaporated seed layer utilized to promote uniform growth of Al2O3 over the graphene. Electrical characterization has been performed on these devices, and temperature-dependent measurements yielded a rise in the maximum transconductance and a significant shifting of the Dirac point as the operating temperature of the transistors was increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.