Abstract

Microwave performance of the anisotropic conductive film (ACF) and nonconductive film (NCF) interconnects was investigated by measuring the scattering parameters (S-parameters) of the flip chip modules employing the films. To compare the accurate intrinsic microwave performance of the ACF and NCF interconnects without lossy effect of chip and substrate, a de-embedding technique was employed. The effects of two chip materials, Si and quartz (SiO2), and of the metal pattern gap between the signal line and ground plane in the coplanar waveguide (CPW) on the microwave performance of the flip chip module were also investigated. The transmission properties of the quartz were markedly improved over those of the Si chip, which was not suitable for the measurement of the S-parameters of the flip chip interconnect. Extracted impedance parameters showed that the microwave performance of the flip chip interconnect with NCF was slightly better than that of the interconnect with ACF, mainly due to the inductive effect of the conductive particle surface and capacitance of the epoxy matrix in the ACF interconnect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.