Abstract

In this work, we present a phenomenological cryogenic model for gallium nitride (GaN) high electron mobility transistors (HEMTs) with validity all the way down to a temperature of 10 K, benchmarked with experimental characterization results. The device under test (DUT) for cryogenic characterization is a GaN HEMT with a channel length of 250 nm and a gate width of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$40~\mu \text{m}$ </tex-math></inline-formula> . The characterization results exhibit the negative threshold voltage shifts of −3.437, −3.087, and −2.998 V at the temperatures of 300, 60, and 10 K, respectively. Additionally, kink effects at cryogenic temperatures in output characteristics are observed that behave non-monotonically with gate-to-source bias. The impact of detrapping is modeled to investigate the negative shift in <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text {TH}}$ </tex-math></inline-formula> with increasing temperature. To model the kink, the effects of temperature, impact ionization, and field-dependent trapping/detrapping on <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text {TH}}$ </tex-math></inline-formula> have been explored and implemented as a submodel in the industry standard Advanced SPICE Model (ASM)-HEMT framework. Here, we aim to overcome the limitations of the prior GaN device models in the quest for enabling GaN-based circuits for cryogenic applications, such as deep space reception, radio astronomy, and quantum computing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call