Abstract

Ultra-thin gate oxides with thickness smaller than 3 nm were prepared by anodic oxidation (anodization) in deionized water under direct-current biasing superimposed with alternating-current signal (DAC-ANO). It is experimentally observed that the DAC-ANO oxides after suitable high temperature annealing have better electrical characteristics than conventional rapid thermal oxides (RTO). Other advantages of DAC-ANO oxides include lower leakage current, higher time-zero dielectric breakdown and time-dependent dielectric breakdown endurance, and less stress-induced leakage current. The charge trapping behavior under high field stress is less significant in DAC-ANO oxides than in RTO ones. The improved reliability of DAC-ANO oxides can be explained by the nature of AC switching effect. DAC-ANO oxide is a potential candidate in the application of ultra-thin gate oxide to deep sub-micron devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.