Abstract

NAND silicon-oxide-nitride-oxide-silicon (SONOS) flash memory devices with double gates fabricated on silicon-on-insulator (SOI) substrates were proposed. The current-voltage characteristics related to the programming operation of the designed nanoscale NAND SONOS flash memory devices on a SOI substrate and on the conventional bulk-Si substrate were simulated and compared in order to investigate device characteristics of the scaled-down memory devices. The simulation results showed that the short channel effect and the subthreshod leakage current for the memory device with a large spacer length were lower than that of the memory device with a small spacer length due to increase of the effective channel length. The device performance of the memory device utilizing the SOI substrate exhibited a smaller subthreshold swing and a larger drain current level in comparison with those on the bulk-Si substrate. These improved electrical characteristices for the SOI devices could be explained by comparing the electric field distribution in a channel region for both devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call