Abstract

Buried, single-crystal CoSi2 layers in Si(100) were fabricated by molecular beam allotaxy, a new two-step method to fabricate buried epitaxial layers. At first CoSi2 precipitates embedded in Si(100) were grown in a molecular beam system. In a second step a continuous, buried silicide layer was formed by rapid thermal annealing. Buried layers with thicknesses ranging from 27 to 224 nm were fabricated and investigated by transmission electron microscopy, Rutherford backscattering, He ion channelling and various electrical methods. Electrical resistivity measurements between 4.2 and 300 K revealed a specific resistivity of 14 μΩ cm at room temperature and 1 μΩ cm at 4.2 K. The temperature dependence follows the Bloch-Grüneisen relation. The resistivity increases with decreasing layer thickness. Schottky diodes were fabricated and characterized using I-V and I-T methods. Excellent diodes were produced with barrier heights of 0.64 ± 0.03 eV and idealities of 1.08.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.