Abstract
AbstractConductive polymer composites (CPC) containing nickel‐coated carbon fiber (NiCF) as filler were prepared using ultra‐high molecular weight polyethylene (UHMWPE) or its mixture with ethylene‐methyl methacrylate (EMMA) as matrix by gelation/crystallization from dilute solution. The electrical conductivity, its temperature dependence, and self‐heating properties of the CPC films were investigated as a function of NiCF content and composition of matrix in details. This article reported the first successful result for getting a good positive temperature coefficient (PTC) effect with 9–10 orders of magnitude of PTC intensity for UHMWPE filled with NiCF fillers where the pure UHMWPE was used as matrix. At the same time, it was found that the drastic increase of resistivity occurred in temperature range of 120–200 °C, especially in the range of 180–200 °C, for the specimens with matrix ratio of UHMWPE and EMMA (UHMWPE/EMMA) of 1/0 and 1/1 (NiCF = 10 vol %). The SEM observation revealed to the difference between the surfaces of NiCF heated at 180 and 200 °C. Researches on the self‐heating properties of the composites indicated a very high heat transfer for this kind of CPCs. For the 1/1 composite film with 10 vol % NiCF, surface temperature (Ts) reached 125 °C within 40 s under direct electric field where the supplied voltage was only 2 V corresponding to the supplied power as 0.9 W. When the supplied voltage was enough high to make Ts beyond the melting point of UHMWPE component, the Ts and its stability of CPC films were greatly influenced by the PTC effect. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1253–1266, 2009
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part B: Polymer Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.