Abstract

The optical and electrical properties of silicon-incorporated hydrogenated amorphous carbon (a-C:H:Si) films deposited via the radio frequency (RF) plasma-enhanced chemical vapor deposition (PECVD) method using a mixture of CH4, H2, and SiH4 were observed. The silane gas whose ranged from 0 to 25 vol.% [SiH4/(SiH4 + CH4) was fed into the reactor while the other deposition parameters were kept constant. The basic properties of these films were investigated via Raman spectroscopy, UV-visible spectrometry, I-V measurement, and surface profiling. The experiment results showed that the film thickness increased from 300 nm to 800 nm for the same deposition time as the silane gas increased. The Raman spectrum obtained from the silicon-incorporated a-C:H films suggested that the film property changed from graphitic-like to more diamond-like. As the silane gas increased, the optical gap, E04, slightly increased from 1.98 eV to 2.62 eV. It was shown that the Si atoms incorporated into the a-C:H films reduced the size of the sp2 clusters. As for the I-V characteristics, the Si-incorporated a-C:H films had a lower leakage current than the a-C:H films without Si.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call