Abstract

A study is reported comparing the electrical and optical properties of CdTe solar cells, prepared using CdS and CdSe buffer layers, to investigate defects in the bulk and interface, carrier transport, and recombination. Temperature dependent capacitance–voltage measurement and admittance spectroscopy were used to extract carrier concentration, resistivity, charge carrier mobility, and their temperature dependence. The authors identify the presence of two defect signatures corresponding to carrier freeze-out and the formation of a Schottky back-contact barrier. The back-contact barrier height (≈300 meV) extracted from the temperature dependent current density–voltage (JVT) experiment was confirmed by conventional admittance spectroscopy. The activation energies of mobility (resistivity) are 101.2 ± 2.5 meV (92.6 ± 2.3 meV) and 84.7 ± 2.7 meV (77.6 ± 4.5 meV) for CdS and CdSe buffer layers, respectively. Intensity dependent photoluminescence analysis demonstrates that the CdSe/CdTe device exhibits lower radiative efficiency than the CdS/CdTe device. This confirms the presence of higher defects in the CdSe/CdTe device corroborated by temperature dependent VOC analysis. The comparative electrical and optical analysis provides insight into improving the performance of CdTe solar cell device by selenization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.