Abstract

The results of experimental studies of electrical and galvanomagnetic properties of CdTe films synthesized under highly nonequilibrium conditions via vapor condensation on a substrate cooled with liquid nitrogen are reported. The temperature dependences of dark conductivity, current-voltage characteristics with and without illumination, temperature dependences of the Hall coefficient RH and effective Hall mobility μH in the planar geometry, and dark current-voltage characteristics in the sandwich geometry are reported. Anisotropy of conductivity is revealed. It is shown that the electrical and galvanomagnetic properties of the films are consistently described by a percolation model of charge transport, according to which, at high temperatures, the charge transport takes place over the percolation level of the valence band, and at low temperatures, over the percolation level of the impurity band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.