Abstract

The “chicken-and-egg” link between charging infrastructure and electric vehicle adoption complicates charging station investment, yet existing research lacks significant understanding of this relationship, particularly in complex network settings. To this end, our research designs a novel agent-based evolutionary game model that incorporates consumers' microscopic behavior into the dynamics of charging station diffusion. Based on a case study, the diffusion of charging stations and electric vehicles under current market conditions is simulated and the impact of the network topology is investigated. Results show that: (1) combined with existing policies, the carbon tax policy could increase the charging station proportion by 17.06%; (2) there is an inverted U-shaped effect between electricity prices and the proliferation of charging stations and electric vehicles; (3) the negative impact of electric vehicle social networks can be transferred to charging station proliferation; (4) there are two priorities for the proliferation of the two industries: prioritizing increasing the clustering coefficient, followed by decreasing the average path length, and increasing the clustering coefficient is better than increasing the individual degree; (5) relevant factors (e.g., construction subsidies, carbon taxes, early high electricity prices, high clustering factor networks) contribute to the conversion of plug-in electric vehicles to battery electric vehicles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.