Abstract

We developed a novel sample preparation method for transmission electron microscopy (TEM) to suppress superfluous electric fields leaked from biased TEM samples. In this method, a thin TEM sample is first coated with an insulating amorphous aluminum oxide (AlOx) film with a thickness of about 20 nm. Then, the sample is coated with a conductive amorphous carbon film with a thickness of about 10 nm, and the film is grounded. This technique was applied to a model sample of a metal electrode/Li-ion-conductive-solid-electrolyte/metal electrode for biasing electron holography. We found that AlOx film with a thickness of 10 nm has a large withstand voltage of about 8 V and that double layers of AlOx and carbon act as a 'nano-shield' to suppress 99% of the electric fields outside of the sample. We also found an asymmetry potential distribution between high and low potential electrodes in biased solid-electrolyte, indicating different accumulation behaviors of lithium-ions (Li+) and lithium-ion vacancies (VLi-) in the biased solid-electrolyte.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call