Abstract
This paper deals with the problem of fault detection and diagnosis of induction motor based on motor current signature analysis. Principal component analysis is used to reduce the three-phase current space to a 2-D space. Kernel density estimation (KDE) is adopted to evaluate the probability density functions of each healthy and faulty motor, which can be used as features in order to identify each fault. Kullback-Leibler divergence is used as an index to identify the dissimilarity between two probability distributions, and it allows automatic fault identification. The aim is also to improve computational performance in order to apply online a monitoring system. KDE is improved by fast Gaussian transform and a points reduction procedure. Since these techniques achieve a remarkable computational cost reduction with respect to the standard KDE, the algorithm can be used online. Experiments are carried out using two alternate current motors: An asynchronous induction machine and a single-phase motor. The faults considered to test the developed algorithm are cracked rotor, out-of-tolerance geometry rotor, and backlash. Tests are carried out at different load and voltage levels to show the proposed method performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.