Abstract

It is investigated the possibility of controlling the electric flow through a ferromagnet–superconductor junction by spin polarization, within a simple, ideal model of a perfect ferromagnetic–superconductor junction. The ferromagnetic and superconducting properties as well as the Andreev reflection are briefly reviewed and the electrical resistance of the junction is computed both in the diffusive and ballistic regime for the ferromagnetic sample. It is shown that the resistance of the junction increases with increasing magnetization, including both positive or negative jumps on passing from the ballistic to the diffusive regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.