Abstract

An analytical description is elaborated for the variable range hopping conduction mechanism in the presence of temperature and electric fields for quasi-three-dimensional organic semiconductor systems. In the proposed description, it is assumed that the localized states are randomly distributed in energy and space coordinates. The expression for the hopping conductivity is obtained for the Gaussian density of states. The model is applied to the analysis of both temperature and electric field-dependent hopping transport in organic semiconductors. It is shown that the Poole–Frenkel behavior is only valid in medium electric field regime. Moreover, we conclude that the electric field determines whether the temperature dependence of conductivity in organic semiconductors obeys the Arrhenius law.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.