Abstract

Since the first observation of the spin-valve effect through organic semiconductors, efforts to realize novel spintronic technologies based on organic semiconductors have been rapidly growing. However, a complete understanding of spin-polarized carrier injection and transport in organic semiconductors is still lacking and under debate. For example, there is still no clear understanding of major spin-flip mechanisms in organic semiconductors and the role of hybrid metal-organic interfaces in spin injection. Recent findings suggest that organic single crystals can provide spin-transport media with much less structural disorder relative to organic thin films, thus reducing momentum scattering. Additionally, modification of the band energetics, morphology, and even spin magnetic moment at the metal-organic interface by interface engineering can greatly impact the efficiency of spin-polarized carrier injection. Here, progress on efficient spin-polarized carrier injection into organic semiconductors from ferromagnetic metals by using various interface engineering techniques is presented, such as inserting a metallic interlayer, a molecular self-assembled monolayer (SAM), and a ballistic carrier emitter. In addition, efforts to realize long spin transport in single-crystalline organic semiconductors are discussed. The focus here is on understanding and maximizing spin-polarized carrier injection and transport in organic semiconductors and insight is provided for the realization of emerging organic spintronics technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.