Abstract

Electric field modulation analysis of thermopower (S)–carrier concentration (n) relation of a bilayer laminate structure composed of a 1.5-nm-thick conducting layer, probably TinO2n–1 (n = 2, 3, …) Magnéli phase, and rutile TiO2, was performed. The results clearly showed that both the rutile TiO2 and the thin interfacial layer contribute to carrier transport: the rutile TiO2 bulk region (mobility μ ∼ 0.03 cm2 V−1 s−1) and the 1.5-nm-thick interfacial layer (μ ∼ 0.3 cm2 V−1 s−1). The effective thickness of the interfacial layer, which was obtained from the S-n relation, was below ∼3 nm, which agrees well with that of the TEM observation (∼1.5 nm), clearly showing that electric field modulation measurement of S-n relation can effectively clarify the carrier transport properties of a bilayer laminate structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.