Abstract
Emerging electrical memory technologies based on phase-change materials capitalize on a fast amorphous-to-crystalline transition. Recent evidence from measurements of relaxation oscillations and switching statistics in phase-change memory devices indicates the possibility that electric field induced crystal nucleation plays a dominant role in defining the characteristic electrical switching behavior. Here we present a detailed kinetics study of crystallization in the presence of an electric field for the phase-change material Ge2Sb2Te5. We derive quantitative crystallization maps to show the effects of both temperature and electric field on crystallization and we identify field ranges and parameter values where the electric field effects might play a significant role.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.