Abstract
Externally triggered motion of small objects has potential in applications ranging from micromachines, to drug delivery, and self-assembly of superstructures. Here we present a new concept for the controlled propulsion of conducting objects with sizes ranging from centimetres to hundreds of micrometres. It is based on their polarization, induced by an electric field, which triggers spatially separated oxidation and reduction reactions involving asymmetric gas bubble formation. This in turn leads to a directional motion of the objects. Depending on the implied redox chemistry and the device design, the speed can be controlled and the motion can be switched from linear to rotational. This type of chemical locomotion is an alternative to existing approaches based on other principles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.