Abstract

Electroabsorption (E-A) and electrophotoluminescence (E-F) spectra of thin films of blue-light-emitting poly(9,9-dioctylfluorene) (PFO) have been measured at temperatures ranging from 25 to 295 K to examine both the optical property and excitation dynamics of these films in the presence of external electric fields of 0−1.2 MV cm−1. Electric field effects on excitation dynamics depend on not only applied field strength but also excitation wavelength and temperature. For photoexcitation at 344 or 402 nm, E-F spectra observed with low applied fields show only the Stark shift, whereas fluorescence quenching is induced only by strong electric fields. For photoexcitation at a shorter wavelength of 298 nm, on the other hand, field-induced quenching of fluorescence is observed even with a weak electric field at any temperature. The presence of a nonradiative process from highly excited states that is effectively affected by electric fields is suggested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call