Abstract

We have investigated the effects of external static electric fields applied to a wide variety of TiO2/water interfaces using nonequilibrium molecular-dynamics techniques. The externally applied electric fields were found to be relatively weak vis-a-vis intrinsic electric fields computed in the interfacial regions, the magnitude of which varied from 1.8 V/A toward bulklike water up to 4.5 V/A at the interface. The molecular arrangement of the first hydration layer is determined fully by the surface structure of TiO2, where water is coordinated to unsaturated titanium atoms and/or interacting with exposed surface oxygen atoms. Moreover, the water dipoles tend to align with the strong intrinsic field. As a result, diffusion of water in this region was found to be by 1 order of magnitude lower than that of bulk water; application of an external electric field did not lead to a considerable change. In contrast to unperturbed diffusivity, a rather strong response of hydrogen-bond lifetime to the applied field w...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.