Abstract

By using the compact-density-matrix approach and iterative procedure, a detailed procedure for the calculation of the second-harmonic generation (SHG) susceptibility tensor is given in the electric-field-biased parabolic and semiparabolic quantum wells (QW's). The simple analytical formula for the SHG susceptibility in the systems is also deduced. By adopting the methods of envelope wave function and displacement harmonic oscillation, the electronic states in parabolic and semi parabolic QW's with applied electric fields are exactly solved. Numerical results on typical ${\mathrm{Al}}_{x}{\mathrm{Ga}}_{1\ensuremath{-}x}\mathrm{Al}/\mathrm{GaAs}$ materials show that, for the same effective widths, the SHG susceptibility in semiparabolic QW is larger than that in parabolic QW due to the self-asymmetry of the semiparabolic QW, and the applied electric field can make the SHG susceptibilities in both systems enhance remarkably. Moreover, the SHG susceptibility also sensitively depends on the relaxation rate of the systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.