Abstract

By exploiting the Kerr effect and the gradient of the composition ratio m, Nb/(Ta+Nb) in mol%, in KTa1−xNbxO3 (KTN) crystals, we have designed an electric-field-controlled optical switch. The operating principle of the switch is described. During the switching process, the incident linearly polarized beam is orthogonally deflected as it propagates through the crystals. The g11/g12 ratio (>10), wavelength range (491–1064nm), I–V characteristics (0–800V), extinction ratio (0–1), gradient of Curie temperature (21–22.9°C), response time that may be in ns order, and influence of the photorefractive effect were studied. The results show that our design provides a new kind of optical switch with macro scale (mm order), adjustable extinction ratio (0–1), wide wavelength range (491–1064nm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.