Abstract
In this work, we have investigated the effect of electric field and impurity position on nonlinear optical rectification of a double cone like quantum dot in the effective mass approximation and by using compact density-matrix formalism. We have calculated the energy levels and wave functions using finite element method (FEM) in the presence of impurity and influence of electric field. The results show that: (i) the binding energy changes with the impurity position and it is changed by the applied electric field, (ii) nonlinear optical rectification peak position of this system present the blue or red shift due to the applied electric field and changing the impurity position. (iii) for low electric field, impurity position plays an important role in electronic and optical properties, but for larger electric field, impurity position role becomes non-significant. (iv) the optical rectification changes due to the impurity position and the electric field are considerable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.