Abstract
In the framework of the one-dimension field model of semiconductor simultaneosly subjected to the action of carrier-warming electric field and two quasi- monochromatic light waves the authors have numerically calculated the spatial-temporal distributions of inner electric field Е(x,τ) and conductivity band electrons n(x,τ) in dependence on external control parameters (intensity of the incident light waves, their wave vector, external electric field and doping impurity concentration). It was found that the device operating on the base of photorefractive Gunn effect may be controllably switched between three following operation modes: low- and high-light wave intensity as well as a transition mode. The influence of the external control parameters on the Е(x,τ) distribution was determined for each mode in question. It was shown that one could efficiently control the refractive index increment n Δ by means of proper change of the control parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Semiconductor Physics, Quantum Electronics & Optoelectronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.