Abstract

We show how the colloidal-probe technique, which is based on force measurements made with the atomic force microscope, can be used to accurately determine the charging parameters of water-solid interfaces. Besides yielding accurate values of the double-layer or diffuse-layer potential, the method also allows reliable determination of the charge regulation properties of the surfaces. The latter can be quantified with a regulation parameter, which is essential to properly describe forces between interfaces, especially in asymmetric situations when one of the interfaces is charged and the other one is close to neutral. The technique relies on a highly charged probe particle, for which the charging properties are accurately determined by interpreting the double-layer contribution of the measured force profiles in the symmetric sphere-sphere geometry with Poisson-Boltzmann (PB) theory. Once the probe particle is calibrated, this particle is used to measure the force profile between an unknown substrate in the asymmetric sphere-sphere or sphere-plane geometry. From this profile, the diffuse-layer potential and regulation parameter of the substrate can be again determined with PB theory. The technique is highly versatile, as it can be used for a wide variety of substrates, including colloidal particles and planar substrates. The technique is also applicable in salt solutions containing multivalent ions. The current drawbacks of the technique are that it can only be applied up to moderately high salt levels, typically to 10 mM, and only for relatively large particles, typically down to about 1 μm in diameter. How the technique could be extended to higher salt levels and smaller particle size is also briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.