Abstract

AbstractThe demand for charge‐coupled device (CCD) imagers has surged exponentially during the last decade owing to their exceptionally high quality and low noise imaging. However, they are still confronting the performance constraints of high operation power, low speed, and limited charge integration. Here, the electric‐dipole gated phototransistor operation without external gate bias is reported by using high‐k HfO2 dielectric material. The electrostatic coupling of photogenerated charges from the Si with the graphene channel through a 10 nm HfO2 layer is demonstrated. The device exhibits remarkable performance in the broadband spectrum (266–1342 nm) at low drain bias voltage. The high values of responsivity, external quantum efficiency, and detectivity of 3.7 × 103 A W−1, 0.72 × 104, and 6.20 × 1013 cmHz½ W−1, respectively, for 800 nm wavelength and 3.3 × 103 A W−1, 1.31 × 104, and 5.61 × 1013 cmHz½ W−1, respectively, for 400 nm wavelength without gate are achieved. This discovery may potentially eliminate the requirement for gate terminals from commercial CCD devices. The power efficient features of this gateless image sensor can be fabricated at the industrial scale for the future machine vision market.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.